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Abstract

In many motor tasks, optimal performance presupposes that human movement planning is based on an accurate internal
model of the subject’s own motor error. We developed a motor choice task that allowed us to test whether the internal
model implicit in a subject’s choices differed from the actual in isotropy (elongation) and variance. Subjects were first
trained to hit a circular target on a touch screen within a time limit. After training, subjects were repeatedly shown pairs of
targets differing in size and shape and asked to choose the target that was easier to hit. On each trial they simply chose a
target – they did not attempt to hit the chosen target. For each subject, we tested whether the internal model implicit in her
target choices was consistent with her true error distribution in isotropy and variance. For all subjects, movement end
points were anisotropic, distributed as vertically elongated bivariate Gaussians. However, in choosing targets, almost all
subjects effectively assumed an isotropic distribution rather than their actual anisotropic distribution. Roughly half of the
subjects chose as though they correctly estimated their own variance and the other half effectively assumed a variance that
was more than four times larger than the actual, essentially basing their choices merely on the areas of the targets. The task
and analyses we developed allowed us to characterize the internal model of motor error implicit in how humans plan
reaching movements. In this task, human movement planning – even after extensive training – is based on an internal
model of human motor error that includes substantial and qualitative inaccuracies.
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Introduction

Human movement is prone to error. This error may be reduced

after extensive practice or under careful control, but can never be

entirely eliminated. It can have severe consequences when, for

example, the outcome of a surgical procedure hangs on the

accuracy of the surgeon’s movements. Human decisions often

reflect an internal model of the probabilistic regularities of the

world [1]. We would expect to find such an internal model of the

uncertainties in our own movements.

Indeed, the unpredictable error inherent in movement has

provided a rich and precise laboratory model of decision under

uncertainty. Recent studies have shown that human decisions

under visual and motor uncertainty are close to those predicted by

Bayesian Decision Theory, maximizing expected gain [2–9].

However, these studies are not particularly sensitive tests of

subjects’ knowledge of their own distributions.

In one early study, for example, Trommershäuser, Maloney, &

Landy [7] asked human subjects to make speeded reaching

movements to a touch screen. There were two partly overlapped

circular regions on the screen (Figure 1A). A touch within the

green region earned a reward, within the red, a penalty. Any end

points outside of both regions earned neither reward nor penalty.

The challenge to the subject was to decide where he should aim in

order to maximize his expected winnings.

In Figure 1A we illustrate three possible aim points (golden

diamonds) and a realization of movement end points around the

aim point. The aim point in the upper configuration is so close to

the red penalty circle that the penalty is incurred on a high

proportion of trials. In contrast, the aim point in the lower

configuration is far from the penalty area and it is unlikely that the

subject will incur a penalty on any given trial. However, on many

trials, her end point falls outside of both circles and she earns no

reward for her effort.

The aim point that maximizes expected gain for the subject with

this motor error distribution is shown in the middle configuration:

it is away from the center of the rewarding region in the direction

opposite to the penalty region. Its position depends on the subject’s

error distribution, the locations of reward and penalty regions, and

the magnitudes of rewards and penalties. Trommershäuser et al.

[7] found that human subjects shifted their aim points with varying

reward conditions and the amount of rewards they won were close

to that predicted by an optimal choice of aim point, ranging from

92.0% to 106.9% of the latter for different subjects. The

implication is that people can compensate for their motor

uncertainty in order to maximize monetary gain. Given this result





indistinguishable from optimal in Trommershäuser et al.’s [7]

experiment, and in any of the studies we cited earlier.

We developed a simple motor choice task to more directly

assess humans’ internal models of their own motor error

distributions. Human subjects were first trained to make

speeded movements to radially-symmetric targets on a com-

puter display. They were permitted only a short time to

execute the movement and hit the screen. During the training,

we estimated subjects’ true motor error distributions w x,yð Þ.
They were all well described as vertically elongated, bivariate

Gaussian distributions.

In the second phase of the experiment, subjects did not attempt

to hit targets. Instead they were given pairs of potential targets,

one rectangle and one circle, of specific sizes. The task was to

choose the target that was easier to hit (Figure 2A). Subjects knew

that at the end of the experiment they would attempt to hit a

small number of the targets they had chosen and they would be

paid a cash reward for each success. The cash reward for either

target was the same and it was therefore in their interest to choose

the target in each pair that offered the higher probability of

success.

If the targets are denoted T1 and T2 then the true probability of

success in hitting the ith target is

pi ~

ð
Ti

w x,yð Þ dx dy , i~1,2: ð1Þ

The target is just the region of integration and the probability of

success is just the proportion of the probability density function

contained within the target. (We verified in training that subjects

aimed at the centroid of the targets.)

But how is the subject to decide between targets? We consider

the possibility that she has some internal estimate of the

distribution of her own motor uncertainty, y x,yð Þ. In evaluating

each target, she computes an estimate of probability based on this

estimate,

p’i ~

ð
Ti

y x,yð Þ dx dy , i~1,2, ð2Þ

and then chooses whichever target offers the higher probability.

This strategy would maximize expected gain in our task if the

subject’s estimate of her distribution were accurate:

x,y



Maloney [11] show that people have systematic probability

distortions with motor lotteries as well, although in a reverse

pattern: they underestimated small probabilities and overestimated

large probabilities. Choice between targets in our task depends

only on ordering of the estimates of the probabilities of hitting

them – since the reward associated with success never varies – and

is thus insensitive to any distortion of probability. In particular, if

w p’ð Þ is any strictly increasing function of probability p’ which the



Instead, a was always close to one. For 8 out of the 10 subjects, the

a was indistinguishable from one. That is, most of the subjects of

the Gaussian type incorrectly treated their error distribution as

isotropic.

To summarize, there were two patterned biases in subjects’

models in the probability choice task: First, approximately half of

the subjects failed to take their own motor error distributions into





doubled the training trials to 600 in Experiment 2. As in

Experiment 1, all subjects’ true distributions were vertically

elongated, bivariate Gaussian distributions.

Even with this more extensive training, among 12 new subjects,

there were 2 subjects who were better fit by the area-matching





valuable to compare actual to ideal even when people are not

ideal.

What distinguishes our study from previous studies is an

exploration of the most likely model implicit in each individual’s

performances. We broke down the ideal observer into multiple

dimensions (variance and anisotropy) and assessed human

observers on these dimensions. The multi-dimensional tests

accommodate the possibility that a specific individual may deviate

from the ideal observer on some dimensions but not others, which

a one-dimensional test would not afford. The deviation on each

dimension is separable in subjects’ choices. Our task is thus

sensitive to the each particular individual’s possible deviations

from ideal and provides alternative models to ideal.

In a recent article [23] we found people do not have an accurate

model of their own visual uncertainty. Subjects chose between

visual discrimination tasks that could differ in location (retinal

eccentricity) and contrast. By examining subjects’ choices we could

test what they implicitly assumed about their own retinal sensitivity

in the periphery. We found that all but one subject was not even

consistent in their choices: the pattern of choices violated

transitivity of preference, i.e. in some cases they preferred lottery

A over lottery B and lottery B over lottery C but, finally, lottery C

over lottery A.

Had we simply compared subjects’ performances to optimal in

Zhang et al [23] and the present paper, we would only have

concluded that subjects’ performance was less than ideal,



preferred. They were rewarded for hits on these trials just as in the

training task. The eight targets were randomly selected from the

targets that they had judged to be easier to hit.

Area choice. The area choice task was a control to the

probability choice task, where the same stimuli were used but now



this test statistic is asymptotically distributed as a x2 random

variable with degrees of freedom equal to the difference in number

of parameters in the two models under comparison. Accordingly

we compared D to the 95th percentile of a x2
2 distribution.

Confidence intervals. We computed the 95% confidence

intervals of s=s0, a=a0, a, a0 using a bootstrap method [28]. For

each subject, we ran a virtual experiment for 1000 times and

estimated the above measures on each run. In the training task,

endpoint positions were resampled from the non-time-out trials. In

the probability choice task, the responses of each staircase trial was

generated by parametric resampling [29] from the psychometric

functions (Eq. 5) that was fitted with the real data.

Supporting Information

Figure S1 Illustration of the difficulty in estimating a as
s=s0 increases. For the specific rectangle conditions (propor-

tional to s0) in Experiment 1, the equivalent radii R0 are

computed for a virtual observer who assumes an error distribution

in the form of Eq. 4 with parameters s and a. The predicted R0

for a~1:44 and for a~1 are plotted against each other to show

how the virtual observer’s R0 would differ for different a when the

s=s0 is the same. The identity line corresponds to no difference at

all. Each panel is plotted for a different s=s0. Note that as the

s=s0 increases, the effect of varying a diminishes. In the real

experiment, at the existence of response noise, a smaller difference

implies less discriminability. That is, a could not be precisely

determined when s=s0 is large enough.
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Figure S2 Staircase convergence in the probability
choice task of Experiment 1. The radius of the circle was

plotted as a function of the trial No. of each staircase for typical

subjects of the Gaussian type (left) and the area-matching type

(right). Top panels are for horizontal rectangles; bottom panels for

vertical rectangles. Blue circles and red X’s denote 1-up/2-down

and 2-up/1-down staircases. Visually scrutinized, staircases of

both subjects were well converged (see the Methods for a formal

comparison of staircase convergence between the two types of

subjects).
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16. Trommershäuser J, Landy MS, Maloney LT (2006) Humans rapidly estimate


